Effects of arterial hypotension on microvascular oxygen exchange in contracting skeletal muscle.
نویسندگان
چکیده
In healthy animals under normotensive conditions (N), contracting skeletal muscle perfusion is regulated to maintain microvascular O2 pressures (PmvO2) at levels commensurate with O2 demands. Hypovolemic hypotension (H) impairs muscle contractile function; we tested whether this condition would alter the matching of O2 delivery (Qo2) to O2 utilization (Vo2), as determined by PmvO2 at the onset of muscle contractions. PmvO2 in the spinotrapezius muscles of seven female Sprague-Dawley rats (280+/-6 g) was measured every 2 s across the transition from rest to 1-Hz twitch contractions. Measurements were made under N (mean arterial pressure, 97+/-4 mmHg) and H (induced by arterial section; mean arterial pressure, 58+/-3 mmHg, P<0.05) conditions; PmvO2 profiles were modeled using a multicomponent exponential fitted with independent time delays. Hypotension reduced muscle blood flow at rest (24+/-8 vs. 6+/-1 ml-1.min-1.100 g-1 for N and H, respectively; P<0.05) and during contractions (74+/-20 vs. 22+/-4 ml-1.min-1.100 g-1 for N and H, respectively; P<0.05). H significantly decreased resting PmvO2 and steady-state contracting PmvO2(19.4+/-2.4 vs. 8.7+/-1.6 Torr for N and H, respectively, P<0.05). At the onset of contractions, H reduced the time delay (11.8+/-1.7 vs. 5.9+/-0.9 s for N and H, respectively, P<0.05) before the fall in PmvO2 and accelerated the rate of PmvO2 decrease (time constant, 12.6+/-1.4 vs. 7.3+/-0.9 s for N and H, respectively, P<0.05). Muscle Vo2 was reduced by 71% at rest and 64% with contractions in H vs. N, and O2 extraction during H averaged 78% at rest and 94% during contractions vs. 51 and 78% in N. These results demonstrate that H constrains the increase of skeletal muscle Qo2 relative to that of Vo2 at the onset of contractions, leading to a decreased PmvO2. According to Fick's law, this scenario will decrease blood-myocyte O2 flux, thereby slowing Vo2 kinetics and exacerbating the O2 deficit generated at exercise onset.
منابع مشابه
Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog.
The effects of reduction in perfusion pressure, arterial hypoxia, muscle contraction, and adrenergic stimulation on the hindlimb muscle circulation were studied. Under normal conditions (venous PO2 greater than or equal to 40 mm Hg), oxygen delivery to the muscle was maintained mainly by large increases in the capillary exchange capacity and the oxygen extraction ratio in accord with tissue dem...
متن کاملBlood Flow, Blood Oxygen Tension, Oxygen Uptake, and Oxygen Transport in Skeletal Muscle.
STAINSBY, WENDELL N., AND ARTHUR B. OTIS. BZoodLfTow, blood oxygen tension, oxygen uptake, and oxygen transport in skeletal muscle. Am. J. Physiol. 206(4) : 858-866. rg64.-The effect of changes in blood flow and of blood oxygen tension on oxygen uptake of the in situ gastrocnemius-plantaris muscle group of the dog was examined. Oxygen uptake by resting muscle was not altered by changes in blood...
متن کاملComparing the Effect of Simple Filtration Hemodialysis and Ultrafiltration Hemodialysis on Arterial Oxygen Saturation and Blood Pressure in Chronic Dialysis
Background and purpose: Hypoxemia and hypotension are important complications of hemodialysis in patients with chronic renal failure that are linked to several factors, including the type of filters used. The aim of this study was to compare the effect of simple filtration hemodialysis and ultrafiltration hemodialysis on blood pressure and blood arterial oxygen level. Materials and methods: In...
متن کاملIs postexercise hypotension related to excess postexercise oxygen consumption through changes in leg blood flow?
After a single bout of aerobic exercise, oxygen consumption remains elevated above preexercise levels [excess postexercise oxygen consumption (EPOC)]. Similarly, skeletal muscle blood flow remains elevated for an extended period of time. This results in a postexercise hypotension. The purpose of this study was to explore the possibility of a causal link between EPOC, postexercise hypotension, a...
متن کاملEffects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2006